Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The Santa Rosalía basin (Baja California Sur, México) contains a rich record of late Cenozoic volcanism, faulting, and sedimentation that provides a crucial constraint on the timing of marine flooding from the Pacific Ocean into the nascent Gulf of California oblique rift, yet the precise age of the basin is uncertain. Previous studies used reconnaissance paleomagnetic data and a 40Ar/39Ar age of 6.76 ± 0.90 Ma on the intrabasinal Cinta Colorada tuff to estimate a depositional age of ca. 7.2–6.3 Ma for the marine Boleo Formation and initial flooding of the central Gulf of California. Here, we present a large (n = 2091) detrital zircon U-Pb geochronology data set from the Boleo Formation that indicates a maximum depositional age of 6.35 ± 0.21 Ma for pumiceous sandstone at the base (below the basal limestone), a revised age of 5.86 ± 0.06 Ma for the Cinta Colorada tuff in the middle, and a maximum depositional age of 5.70 ± 0.21 Ma for the top. Detrital zircon age spectra suggest a local provenance for the Boleo Formation involving recycling from underlying Oligocene–Miocene strata in proximal source areas. Integration of detrital zircon ages with existing paleomagnetic data suggests that the lower ~30 m of the Boleo Formation accumulated during normal-polarity subchron C3An.1n (6.27–6.02 Ma), and the middle to upper Boleo Formation was deposited entirely during reverse-polarity chron C3r (6.02–5.24 Ma). We therefore reassign the depositional age span of the Boleo Formation to ca. 6.3–5.7 Ma. Although not preferred, a minimum-duration depositional model from ca. 6.1 to 5.8 Ma is also permissible if a consistently high sedimentation rate of ~0.4– 1.0 mm/yr is inferred. This revised younger age for the Boleo Formation implies marine incursion in the central Gulf of California at ca. 6.3 Ma, ~1 m.y. younger than previously thought. We envision that regional marine flooding occurred during a very short (<100 k.y.) event that inundated a narrow tectonic trough over a distance of at least ~1000 km along the plate boundary from the central Gulf of California to the Salton Trough and reaching into the present-day Lower Colorado River Valley. This study also demonstrates the utility of large-volume and large-n detrital zircon studies in establishing the ages of sedimentary successions deposited over very short time spans (<1 m.y.) and/or during relative lulls in magmatism and geomagnetic reversals.more » « lessFree, publicly-accessible full text available June 18, 2026
-
Abstract. The Geoengineering Model Intercomparison Project (GeoMIP) has proposed multiple model experiments during phases 5 and 6 of the Climate Model Intercomparison Project (CMIP), with the latest set of model experiments proposed in 2015. With phase 7 of CMIP in preparation and with multiple efforts ongoing to better explore the potential space of outcomes for different solar radiation modifications (SRMs) both in terms of deployment strategies and scenarios and in terms of potential impacts, the GeoMIP community has identified the need to propose and conduct a new experiment that could serve as a bridge between past iterations and future CMIP7 experiments. Here we report the details of such a proposed experiment, named G6-1.5K-SAI, to be conducted with the current generation of scenarios and models from CMIP6 and clarify the reasoning behind many of the new choices introduced. Namely, compared to the CMIP6 GeoMIP scenario G6sulfur, we decided on (1) an intermediate emission scenario as a baseline (the Shared Socioeconomic Pathway 2-4.5), (2) a start date set in the future that includes both considerations for the likelihood of exceeding 1.5 °C above preindustrial levels and some considerations for a likely start date for an SRM implementation, and (3) a deployment strategy for stratospheric aerosol injection that does not inject in the tropical pipe in order to obtain a more latitudinally uniform aerosol distribution. We also offer more details regarding the preferred experiment length and number of ensemble members and include potential options for second-tier experiments that some modeling groups might want to run. The specifics of the proposed experiment will further allow for a more direct comparison between results obtained from CMIP6 models and those obtained from future scenarios for CMIP7.more » « less
-
Abstract. Solar climate intervention using stratospheric aerosol injection (SAI) has been proposed as a method which could offset some of the adverse effects of global warming. The Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI) set of simulations is based on a moderate-greenhouse-gas-emission scenario and employs injection of sulfur dioxide at four off-equatorial locations using a control algorithm which maintains the global-mean surface temperature at 1.5 K above pre-industrial conditions (ARISE-SAI-1.5), as well as the latitudinal gradient and inter-hemispheric difference in surface temperature. This is the first comparison between two models (CESM2 and UKESM1) applying the same multi-target SAI strategy. CESM2 is successful in reaching its temperature targets, but UKESM1 has considerable residual Arctic warming. This occurs because the pattern of temperature change in a climate with SAI is determined by both the structure of the climate forcing (mainly greenhouse gases and stratospheric aerosols) and the climate models' feedbacks, the latter of which favour a strong Arctic amplification of warming in UKESM1. Therefore, research constraining the level of future Arctic warming would also inform any hypothetical SAI deployment strategy which aims to maintain the inter-hemispheric and Equator-to-pole near-surface temperature differences. Furthermore, despite broad agreement in the precipitation response in the extratropics, precipitation changes over tropical land show important inter-model differences, even under greenhouse gas forcing only. In general, this ensemble comparison is the first step in comparing policy-relevant scenarios of SAI and will help in the design of an experimental protocol which both reduces some known negative side effects of SAI and is simple enough to encourage more climate models to participate.more » « less
-
Arctic amplification (AA) is a coupled atmosphere-sea ice-ocean process. This understanding has evolved from the early concept of AA, as a consequence of snow-ice line progressions, through more than a century of research that has clarified the relevant processes and driving mechanisms of AA. The predictions made by early modeling studies, namely the fall/winter maximum, bottom-heavy structure, the prominence of surface albedo feedback, and the importance of stable stratification have withstood the scrutiny of multi-decadal observations and more complex models. Yet, the uncertainty in Arctic climate projections is larger than in any other region of the planet, making the assessment of high-impact, near-term regional changes difficult or impossible. Reducing this large spread in Arctic climate projections requires a quantitative process understanding. This manuscript aims to build such an understanding by synthesizing current knowledge of AA and to produce a set of recommendations to guide future research. It briefly reviews the history of AA science, summarizes observed Arctic changes, discusses modeling approaches and feedback diagnostics, and assesses the current understanding of the most relevant feedbacks to AA. These sections culminate in a conceptual model of the fundamental physical mechanisms causing AA and a collection of recommendations to accelerate progress towards reduced uncertainty in Arctic climate projections. Our conceptual model highlights the need to account for local feedback and remote process interactions within the context of the annual cycle to constrain projected AA. We recommend raising the priority of Arctic climate sensitivity research, improving the accuracy of Arctic surface energy budget observations, rethinking climate feedback definitions, coordinating new model experiments and intercomparisons, and further investigating the role of episodic variability in AA.more » « less
-
Abstract. As part of the Geoengineering Model IntercomparisonProject a numerical experiment known as G6sulfur has been designed in whichtemperatures under a high-forcing future scenario (SSP5-8.5) are reduced tothose under a medium-forcing scenario (SSP2-4.5) using the proposedgeoengineering technique of stratospheric aerosol intervention (SAI).G6sulfur involves introducing sulfuric acid aerosol into the tropicalstratosphere where it reflects incoming sunlight back to space, thus coolingthe planet. Here, we compare the results from six Earth-system models thathave performed the G6sulfur experiment and examine how SAI affects twoimportant modes of natural variability, the northern wintertime NorthAtlantic Oscillation (NAO) and the Quasi-Biennial Oscillation (QBO).Although all models show that SAI is successful in reducing global meantemperature as designed, they are also consistent in showing that it forcesan increasingly positive phase of the NAO as the injection rate increasesover the course of the 21st century, exacerbating precipitationreductions over parts of southern Europe compared with SSP5-8.5. In contrast to the robust result for the NAO, there is less consistency for the impact on the QBO, but the results nevertheless indicate a risk that equatorial SAI could cause the QBO to stall and become locked in a phase with permanent westerly winds in the lower stratosphere.more » « less
An official website of the United States government
